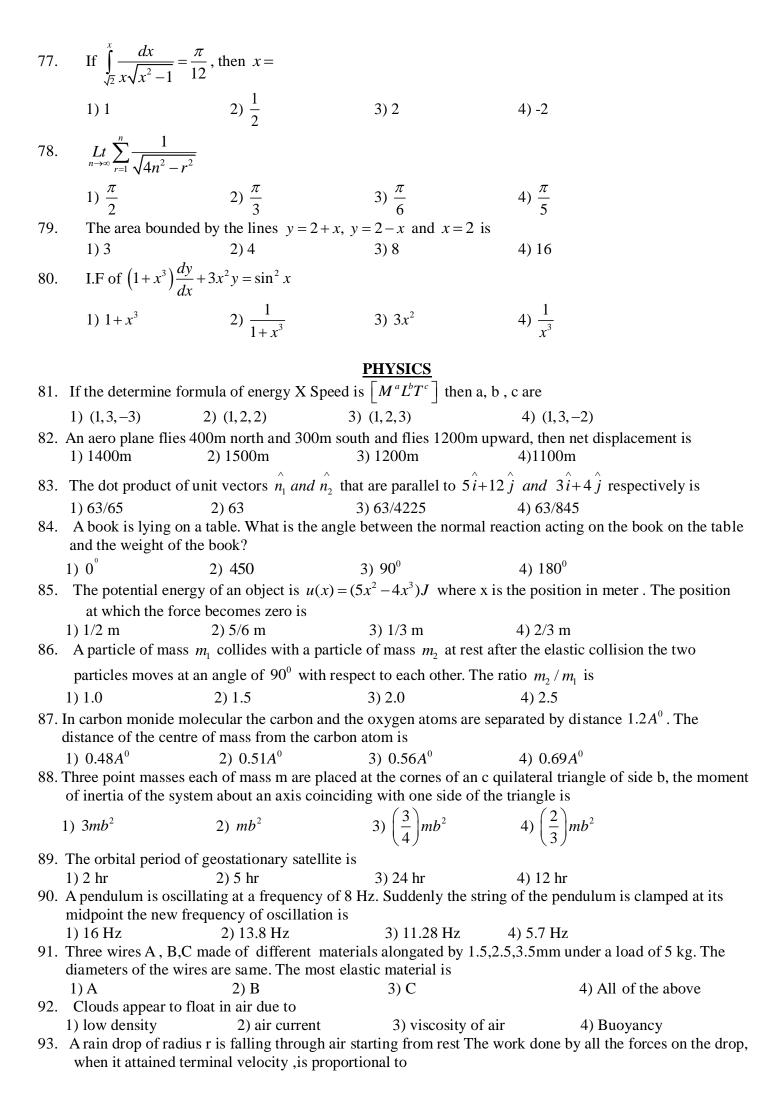

KGCET - 2K25

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

EXAM. DATE.: 01-05-2025 FN

			MATHS	
1.	If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A^3	5 =		
	1) I	2) O	3) A	4) A^{2}
2.	If x, y, z not all zeros	and the equations $x +$	y + z = 0, $(1+a)x + (2a)x + (2a)x$	2+a)y-8z=0,
		z = 0 have non-trivial		
		2) $3 \pm \sqrt{15}$		4) $-5 \pm 2\sqrt{2}$
3.	Range of $\sqrt{9-x^2}$ is			
	1) [0, 3]	2) [-3,3]	3) [-3,0]	4) R
4.	If $f: R^+ \to R$ such the	nat $f(x) = \log_5 x$ then	$f^{-1}(x) =$	
	1) $\log_{x} 10$	2) 5^{x}	3) 3^{-x}	4) $3^{1/x}$
5.		$\frac{1}{8C} = (-1, 0, -2)$ are the	ne adjacent sides of a pa	arallelogram, then the obtuse angle
	between its diagonals		J	
	1) $\frac{\pi}{4}$	2 7	3) $\frac{\pi}{2}$	4) $\frac{3\pi}{4}$
	4	3	3	4
6.	- .	_	given points a and b	-
	1) $\left[\left(\overline{r} - \frac{a+b}{2} \right) \cdot \left(\overline{a} + \frac{a+b}{2} \right) \right]$	$[\overline{b}] \cdot (\overline{a} - \overline{b}) = 0$	$2) \left[\left(\overline{r} - \frac{\overline{a} + \overline{b}}{2} \right) \cdot \left(\overline{a} + \frac{\overline{a} + \overline{b}}{2} \right) \right]$	$\left[\overline{b} \right] \cdot \left(\overline{a} + \overline{b} \right) = 0$
	_ /_	_	4) $\left[\left(\overline{r} - \frac{\overline{a} + \overline{b}}{2} \right) \cdot \left(\overline{a} - \frac{\overline{a} + \overline{b}}{2} \right) \right]$	$\left[\overline{b} \right] \cdot \left(\overline{a} - \overline{b} \right) = 0$
7.	If $A = \begin{vmatrix} \alpha^2 & 5 \\ 5 & -\alpha \end{vmatrix}$ and	$\det(A^{10}) = 1024$ then	$\alpha =$	
	1) -2	2) -3	3) -1	4) 0
8.	In a $\triangle ABC$, $2ac \sin \frac{\pi}{2}$	$\frac{A-B+C}{2} =$		
			3) $b^2 - c^2 - a^2$	4) $c^2 - a^2 - b^2$
9.	$8\sin^2 x + 3\cos^2 x = 5$		_	_
	1) $\pm \frac{1}{\sqrt{2}}$	2) $\pm \frac{1}{\sqrt{3}}$	3) $\pm \sqrt{\frac{3}{2}}$	4) $\pm \sqrt{\frac{2}{3}}$
10.	$\cos 35^0 + \cos 85^0 + \cos$			
11	1) -1 \overline{L}	2) 0	3) 1	4) 2
11.				satisfies the relation $\bar{a}.\bar{b} = 3$ is
		$2)\left(\frac{2}{3},\frac{1}{3},\frac{-1}{3}\right)$		4) (1,1,0)
12.	Angle between the plant	anes $x-y+z=3$, $x+$	y + z = 4 is	
	1) $\cos^{-1}\frac{1}{3}$	2) $\cos^{-1}\frac{4}{41}$	3) $\sin^{-1}\frac{4}{27}$	4) $\sin^{-1}\frac{4}{41}$



39.	The function $f(x) =$	$\sin^2 x \cos^3 x$ attains a	maximum when $x =$				
	1) $\tan^{-1}\frac{2}{3}$	2) $\tan^{-1} \sqrt{\frac{2}{3}}$	3) $\tan^{-1} \frac{3}{2}$	4) $\tan^{-1}\sqrt{\frac{3}{2}}$			
40.		nal equation of a curve		the axes are rotated through an angle $^2 = 288$			
	3) $25x^2 - 14xy + 25y$		4) $25x^2 - 14xy - 25y^2$				
41.	, ,		$x - \log_3 a = 0$ are real, t	then the least value of a is			
	1) 81	2) $\frac{1}{81}$		4) 9			
42.	Number of solutions	of the equation $ x ^2 - 3$	x + 2 = 0 is				
	1) 4	2) 2	3) 0	4) 1			
43.	the points in the $\left\{z \in \right\}$	$= C : Arg\left(\frac{z-2}{z-6i}\right) = \frac{\pi}{2}$	lie on the curve which	is a (where C denotes the set of all			
	complex numbers) 1) Circle	2) Pair of straight line	e 3) Parabola	4) Hyperbola			
44.	$4+5\left(-\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)^{334}+$	$+3\left(-\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)^{303}=$					
	1) $1 - i\sqrt{3}$	2) $-1+i\sqrt{3}$	3) $i\sqrt{3}$	4) $-i\sqrt{3}$			
45.	The biquadratic equa	tion, two of whose root	ts are $1+i, 1-\sqrt{2}$ is				
	1) $x^4 - 4x^3 + 5x^2 - 2x^3$	x - 2 = 0	2) $x^4 - 4x^3 - 5x^2 + 2x$	z + 2 = 0			
	3) $x^4 + 4x^3 - 5x^2 + 2x^3$		4) $x^4 + 4x^3 + 5x^2 - 2x$				
46.	If $f(x) = 0$ is a R.E.	of first type and odd d	egree then a factor of	f(x) is			
	1) $x-2$	2) $x-1$	3) <i>x</i>	4) $x+1$			
47.	In the expansion of $\left(\sqrt{a} + \frac{1}{\sqrt{3a}}\right)^n$ if the ratio of the binomial coefficient of the 4 th term to the binomial						
	coefficient of the 3 rd	term is $\frac{10}{3}$, the 5 th term					
	1) 55 a	,	,	4) $55a^2$			
48.	The sum of the series	$s 1 + \frac{k}{3} + \frac{k(k+1)}{3.6} + \frac{k(k+1)}{3.6}$	$\frac{(k+1)(k+2)}{3.6.9}$ + is				
	$1)\left(\frac{2}{3}\right)^4$	$2)\left(\frac{3}{2}\right)^k$	3) $\frac{2}{3}$	4) $\frac{3}{2}$			
49.	If $\sum_{k=1}^{m} (k^2 + 1)k! = 199$	9(2000!), then <i>m</i> is					
	1) 1999	2) 2000	3) 2001	4) 2002			
50.	The sum of the value taken all at a time is 1) 1080	of the digits at the ten	's place of all the numb 3) 360	pers formed with the help of 3, 4, 5, 6 4) 180			
51.	,	,	,	en number of parallelograms formed			
	$1) \frac{m!n!}{\left(2!\right)^2}$		2) $\frac{m!n!}{(m-2)!(n-2)!}$				
	3) $\frac{m!n!}{(2!)^2(m-2)!(n-1)!}$	2)!	$4) \frac{(m+n)!}{(m+n2)!2!}$				

52.	The number of odd proper positive divisors of $3^a 6^b 21^c$ is $(a,b,c,\in N)$								
	1) $(a+1)(b+1)(c+1)$)-2	2) $(a+b+c+1)(c+1)$	1)-1					
	3) $(a+1)(b+1)(c+1)$)-1	4) $(a+1)(b+1)(c-1)$)					
53.	$2x^3 + 1$	_							
55.	(x-1)(x+1)(x+2)	_							
	1) $2+\frac{1}{2(1+1)}+\frac{1}{2(1+1)}$		2) $2 - \frac{1}{2(1+1)} - \frac{1}{2(1+1)}$	$\frac{1}{1}$ $\frac{5}{1}$					
	() (/	() (,					
	3) $2 + \frac{1}{2(x-1)} - \frac{1}{2(x-1)}$	$\frac{1}{x+1} - \frac{5}{x+2}$	4) $\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$	$\frac{3}{1-\frac{3}{r+2}}$					
54.	() (,) X Z					
	1) Variance	2)Mean deviation	3) Mode	4) Standard Deviation					
55.	If $x_1, x_2,, x_n$ are $x_1, x_2,, x_n$	a observations such that	at $\sum_{i=1}^{n} x_i^2 = 400$ and $\sum_{i=1}^{n}$	$x_i = 80$ then the least value of n is					
56.	1) 12 Two numbers are sele	2) 15	3) 16	4) 18					
50.				replacement. The probability that the					
	1) $\frac{30_{C_2}}{}$	2) $1 - \frac{30_{C_2}}{}$	3) $\frac{31_{C_2}}{}$	4) $1 - \frac{31_{c_2}}{}$					
	c_2	c_2	c_2	c_2					
57.		is 0.14. the probability	y that neither A nor B of	occurs is					
58.	*	,	· ·	•					
	that takes values 0,1,	2,3,4 is							
	1) $\frac{1}{30}$	2) $\frac{1}{10}$	3) $\frac{1}{3}$	4) $\frac{1}{15}$					
59.	The probability of a r	nan hitting the target is	$s \frac{1}{4}$. If the fires 7 times	s the probability of his hitting the					
	target aleast once is								
	1) $\left(\frac{3}{4}\right)^7$	2) $1 - \left(\frac{3}{4}\right)^7$	3) $\left(\frac{1}{4}\right)^7$	4) $1 - \left(\frac{1}{4}\right)^7$					
60.	If Y is a poisson var	iate with parameter $\frac{3}{2}$	find $P(X > 2)$	· ,					
00.		2		_3					
	1) $\frac{5}{2}e^{\frac{-3}{2}}$	2) $1-\frac{5}{2}e^{\frac{-3}{2}}$	3) $1-e^{\frac{3}{2}}$	4) $e^{\frac{3}{2}}$					
61.	If the two circles x^2	$+y^2 + 2gx + c = 0$ and	$x^2 + y^2 - 2fy - c = 0 \text{ h}$	ave equal radius then locus of (g, f)					
	is	2 2	2 2	2 2 2					
<i>(</i> 2	,	,	, .	4) $x^2 + y^2 = 2c^2$					
62.				$dv^2 = dv$					
	ast ast	cist cist	ase ase	cist cist					
63.	The slope of the radio	$\frac{x^3+1}{(x-1)}(x+2) = \frac{1}{(x-1)} + \frac{1}{2(x+1)} - \frac{5}{x+2}$ $\frac{1}{2(x-1)} - \frac{1}{2(x+1)} - \frac{5}{x+2}$ $\frac{1}{2(x-1)} - \frac{1}{2(x+1)} - \frac{5}{x+2}$ $\frac{1}{2(x-1)} + \frac{1}{2(x+1)} - \frac{1}{2(x+1)} - \frac{1}{x+2}$ $\frac{1}{2(x-1)} + \frac{1}{2(x+1)} - \frac{1}{2(x+1)} - \frac{1}{2(x+1)} - \frac{1}{2(x+1)}$							
	1) $-\frac{1}{4}$	2) $\frac{1}{4}$	3) -4	4) $-\frac{1}{2}$					
64.				the centres is ' d ' cut each other					
	1) $\frac{2rR}{\sqrt{r+R}}$	2) $\frac{rR}{\sqrt{r^2+R^2}}$	3) $\frac{2rR}{\sqrt{r^2+R^2}}$	4) $\frac{rR}{r^2 + R^2}$					
	VI IX	N + N	N + N						

65.	The focus and direct vertex is	rix of parabola are (1,2	2) and $2x-3y+1=0$.	Then the equation of the tangent at the		
66.	1) $4x - 6y + 5 = 0$	2) $4x-6y+9=0$ ng equations represent	3) $4x - 6y + 11 = 0$ as a parabola	4) $4x - 6y + 7 = 0$		
			3) $\frac{x}{y} + \frac{4}{x} = 0$	4) $(x+y)^2 + 3 = 0$		
67.	If a chord $4y = 3x -$	48 subtends an angle θ	at the vertex of the pa	arabola $y^2 = 64x$ then $\tan \theta$		
	1) $\frac{10}{}$	2) $\frac{13}{}$	3) $\frac{20}{9}$	4) 16		
60						
68.	that $PA+PB = 8$ is			of the equation to the locus of P such		
			$3) \frac{x^2}{9} + \frac{y^2}{16} = 1$			
69.	The distances from t	he foci to a points $P(x)$	(x_1, y_1) on the ellipse $\frac{x^2}{9}$	$- + \frac{y^2}{25} = 1$ are		
	3	3	3) $5 \pm \frac{4}{5} x_1$	3		
70.	The locus of point of	intersection of perpen	dicular tangents to the	ellipse $\frac{(x-1)^2}{16} + \frac{(y-2)^2}{9} = 1$ is		
	1) $(x-1)^2 + (y-2)^2$	= 25	2) $(x-1)^2 + (y-2)^2$	= 7		
	3) $(x+1)^2 + (y+2)^2$	= 25	4) $(x+1)^2 + (y+2)^2$	= 7		
71.			he straight lines represe			
	1) $\pm \frac{1}{5}$	2) $\frac{1}{5}$ only	3) $-\frac{1}{5}$ only	4) 0		
72.	The points on the ell	ipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ whos	e eccentric angles diffe	er by a right angle are		
	1) $(5\cos\theta, 3\sin\theta), ($	$5\sin\theta,3\cos\theta$	2) $(5\cos\theta, 3\sin\theta), (-1)$	$-5\sin\theta,3\cos\theta$		
	3) $(5\cos\theta, -3\sin\theta)$	$,(5\sin\theta,3\cos\theta)$	4) $(25\cos\theta, -3\sin\theta)$	$(5\sin\theta,3\cos\theta)$		
73.			a right angle at its centr	_		
	1) $\frac{\sqrt{3}+1}{2}$	2) $\frac{\sqrt{7}+1}{2}$	3) $\frac{\sqrt{5}+1}{2}$	4) $\frac{\sqrt{5}}{2}$		
74.	Equation of one of the	ne tangents passing thro	ough $(2, 8)$ to the hypo	$5x^2 - y^2 = 5 \text{ is}$		
			3) $x + y + 3 = 0$			
75.	$\int \frac{\cos x}{\cos 3x} dx =$					
	$1) \frac{1}{2\sqrt{3}} \log \left \frac{1 + \tan x}{1 - \tan x} \right $	+ <i>c</i>	$2) \frac{1}{2\sqrt{3}} \log \left \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right + c$			
	3) $\frac{1}{\sqrt{3}} \log \left \frac{1 + \sqrt{3} \tan}{1 - \sqrt{3} \tan} \right $	$\frac{x}{x} + c$	4) $\frac{2}{\sqrt{3}} \log \left \frac{1 - \sqrt{3} \tan x}{1 + \sqrt{3} \tan x} \right $	$\frac{x}{x} + c$		
76.	$\int x^{1/3} \left(2 + x^{2/3} \right)^{1/4} dx $ i	s equal to				
	1) $\frac{2}{3}(2+x^{2/3})^{9/4}+\frac{12}{5}$	$\frac{2}{c}(2+x^{2/3})^{5/4}+c$	2) $\frac{2}{3} (2 + x^{2/3})^{9/4} - \frac{12}{5}$	$-\left(2+x^{2/3}\right)^{5/4}+c$		
	3) $\frac{1}{3} (2 + x^{2/3})^{9/4} - \frac{12}{5}$	$(2+x^{2/3})^{5/4}+c$	4) $\frac{1}{3} (2 + x^{2/3})^{9/4} + \frac{12}{5}$	$\left(2+x^{2/3}\right)^{5/4}+c$		

	1) r^{3}	2) r^{7}	3) r^{5}	4) r^4
94.	A soap bubble of in	,	e blown up. The surface tension	·
	1) $12\pi R^2 T$	2) $4\pi R^2 T$	3) $16\pi R^2 T$	4) $24\pi R^2 T$
95.	When 50 g of wate	r at $10^{\circ}C$ is mixed wi	th $50g$ of water at $100^{\circ}C$. The	e resultant temperature is
	1) $80^{\circ}C$		3) $25^{\circ}C$	4) $45^{\circ}C$
	1) remains unchang	ged 2) increase 3)	open as a result the temperatudecrease 4) depth on the con	tents inside the refrigerator
97.	A diatonic gas (γ =	:1.4) does 300J work v	when it is expanded isobarical	ly. The heat given to the gas in this
	process is 1) 1050 J	2) 950 J	3) 600 J	4) 550 J
00	<i>'</i>	,	,	,
98.		perature of the hot rese		iciency of the Carnot engine is
			3) $273^{\circ}C$	4) $400^{\circ}C$
	•		~~	4) 400 C
99.			then the ratio of $\frac{CP}{CV}$ is	
	1) $\frac{n+2}{}$	2) $\frac{2n+1}{n}$	3) $\left(\frac{n+2}{n+2}\right)$	4) $\frac{n+4}{2n}$
	2	n	$\binom{n}{n}$	2n
100			nental frequency. One is filled of their length respectively is	with oxygen and the other with
	1) 1:4	2) 4:1	3) 1:2	
101	. A ray of light incid	lent at 30° from a med	dium of refractive index 2 into	a medium of refractive index 1.
	Then angle of refr	action is.		
	1) 30°	$2) 60^{0}$	3) 45°	4) 90°
102		_	nd f2 from images with magnine distance from the lenses. the	fication m1 and m2, when used en f1\f2 is.
		• •		
	$\frac{1}{m_2(1-m_2)}$	$\frac{2}{m_2(m_1-1)}$	$3) \frac{m_2(1-m_1)}{m_1(1-m_2)}$	$\frac{1}{m_1(1-m_1)}$
				ave length of light used then the
	maximum numbe	r of inference maxima	is.	
104	1) 2	2) 3 m and abarga a travall	3)5 ling with a valoaity V along th	4)7 le x-axis enters a uniform electric
104				
	1) circular	ong the Y-axis . what 2) Elliptical	will be the trajectory of the page 3) parabolic	4) Helical
	,		/ L	OPF, then the effective capacitors
103	between the points		11 the 115. 11 each capacitor is	11, then the effective capacitors
	ost ween the point	A B		
		$\left\langle \begin{array}{cc} & \overline{\uparrow}^{c_1} \end{array} \right\rangle$		

3) 20 PF

4) 5 PF

1)10 PF

2) 15 PF

106. The equivalent capacitance between A and B in the given circuit is $A \bullet \begin{array}{c|c} 3\mu F & 3\mu F \\ \hline & K & L \\ \hline \end{array} \begin{array}{c|c} M \\ \hline \end{array}$

1) 3 μF	2) 1 μF	3) 2 μF	4) 1.5 μF
107. A cell can supply currer resistance of the cell is.			10 Ω respectively. The internal
1)2 Ω 2)3 Ω	2	3) 4 Ω	4) 5 Ω
108. Balancing point of a po 40m resistance what is t			to 40 cm by shunting the cell with a
1) 1 Ω 2) 2	Ω 3) 4 Ω	4) 6 Ω
109. A charged particle mov 1) Kinetic energy chang 2) The momentum char 3) Both momentum an 4) Both momentum an	ges but the momentur nges but the kinetic End d Kinetic energy of the	n is constant nergy is constant. ne particles are not co	onstant.
110. A voltmeter of 250 mv : The value of necessary		e of 10 Ω is converte	ed into an ammeter of 250 mA range
1)2 Ω 2) 0.1) 1 Ω	4) 10 Ω
	anges from 3A to 1A		self-inductance of 8mH. The
1) 16V 2) 1.6	$5 \times 10^{-2} V$ 3	$16 \times 10^{-2} V$	4) 2 V
112. The reactance of an ind	·		it at 200Hz
1) 10Ω 2 40Ω	Ω 4) 2.5 Ω	4 20 Ω
113. Practically ozone layer 1) less than $3 \times 10^{-7} m$			1 to $3 \times 10^{-7} m$ 4) all of the above.
114. If the wave length of a			
			$\times 10^{-19} J$ 4) $6.95 \times 10^{-19} J$
			leaves a metal surface with 1.1 ev of
kinetic energy. The world	k function of the meta	al is.	
1) 2.9 eV 2) 5.1 e		64 eV	4) 4.4 eV
116. The ratio of longest was	ve length lines in the	Balmer and pascnen	series of hydrogen spectrum is.
1) $\frac{5}{36}$ 2) $\frac{7}{20}$	_)	3) $\frac{7}{144}$	4) $\frac{5}{27}$
117. Which of the following	ng is a emitted, when	$^{239}_{04}Pu$ Decays into	$_{24}Pu^{235}$?
1) Gamma ray	2) Neutron	3) Electron	4) Alpha particle.
118. For an n-p-n transistor	· ·	,	· · · · · · · · · · · · · · · · · · ·
1) Emitter is heavily d			as is not frue:
2) Base is lightly dope	•	1 5120	
3) Collector is lightly		7e	
4) Collector is modera			
119. The logic operation per			
11). The logic operation per			
A •	7	У	X
B •	1	l	
1) NOR 2) AND	4) N	IAND	4) OR
120. The frequency suitable	,		,
<u> </u>) MHz	3) 1 GHz	4) 1000GHz
, -) • •		,	,

CHEMISTRY

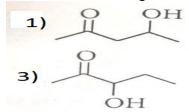
121. (I) $H_2O + O_3 \rightarrow H_2O + 2O_2$

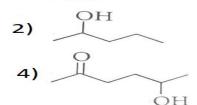
$$(II) \ H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$$

Role of hydrogen peroxide in the above reactions is respectively

- 1) Oxidising in (I) and reducing in (II) 2) reducing in (I) and oxidising in (II) 3) reducing in (I) and (II) 4) oxidising in (I) and (II) If 10^{21} molecules are removed from 200 mg of CO_2 , the number of moles of CO_2 left is 122. 1) 2.88×10^{-3} 2) 28.8×10^{-3} 3) 0.288×10^{-3} 4) 1.66×10^{-2} Leaving tendency of the following groups in decreasing order is 123. *I*. *CI*⁻ $III. OH^-$ IV. 1) IV > II > I > III2) I > II > III > IV4) I > IV > II > III3) II > IV > I > III124. What products are formed when the following compound is treated with Br_2 in the presence of $FeBr_3$ 2) 4) None of these T e ions O^{2-} , F^- , Na^+ , Mg^{2+} and AI^{3+} are isoelectronic. T eir ionic radii show 125. 1) a decrease from O^{2-} to F^{-} and then increase from Na^{+} to AI^{3+} 2) a significant increase from O^{2-} to AI^{3+} 3) a significant decrease from O^{2-} to AI^{3+} 4) an increase from O^{2-} to F^{-} and then decrease from Na^{+} to AI^{3+} . 126. Acidity of diprotic acids in aqueous solutions increases in the order 2) $H_{\gamma}Se < H_{\gamma}S < H_{\gamma}Te$ 1) $H_2S < H_2Se < H_2Te$ 3) $H_{\gamma}Te < H_{\gamma}S < H_{\gamma}Se$ 4) $H_2Se < H_2Te < H_2S$ 127. The correct order of increasing basicity of the given conjugate bases $(R = CH_3)$ is (A) $RCOO^{-} < HC \equiv C^{-} < NH_{2}^{-} < R^{-}$ (B) $RCOO^{-} < HC \equiv C^{-} < R^{-} < NH_{2}^{-}$ $(C) R^{-} < HC \equiv C^{-} < RCOO^{-} < NH_{2}^{-}$ (D) $RCOO^{-} < NH_{2}^{-} < HC \equiv C^{-} < R^{-}$ 1) benzene and ethanol 2) acetonitrile and acetone 3) KCI and water
- 128. A mong the following mixtures, dipole-dipole as the major interaction is present in
 - 4) benzene and carbon tetrachloride.
- The enthalpy of neutralization of NH_4OH and CH_3COOH is $-10.5 \, kcal \, mol^{-1}$ and enthalpy of Neutralization of CH_3COOH with strong base is $-12.5 \, kcal \, mol^{-1}$. T e enthalpy of ionization of NH₄OH Wiil be
 - 1) $4.0 \, kcal \, mol^{-1}$
- 2) $3.0 \, kcal \, mol^{-1}$
- 3) $2.0 \ kcal \ mol^{-1}$
- 4) $3.2 \, kcal \, mol^{-1}$
- 130. The correct order of the oxidation states of nitrogen in $NO, NO_2, and N_2O_3$ is
 - 1) $NO_2 < NO < N_2O_3 < N_2O$

2) $N_2O < NO < N_2O_3 < NO$

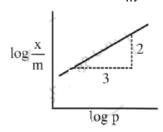

3) $O_2 < N_2O_3 < NO < N_2O$


- 4) $N_2O < N_2O_3 < NO < N_2O$
- 131. When $LiNO_3$ is heated, it gives oxide, Li_2O , where as other alkali metal nitrates decompose to give

Corresponding

- 1) nitrite
- 2) peroxide
- 3) both nitrite and oxide
- 4) none of these
- 132. An explosion takes place when $conc.H_2SO_4$ is added to $KMnO_4$ which of the following is formed?
 - 1) Mn_2O_7
- 2) $Mn O_2$
- 3) $Mn SO_4$
- 4) Mn_2O_3
- 133. Antiseptics and disinfectants either kill or prevent growth of micro-organisms. Identify which of the following Statement is not true
 - 1) Dilute solution of boric acid and hydrogen peroxide are strong antiseptics.
 - 2) Disinfectants harm the tissues.
 - 3) A 0.2% solution of phenol is an antiseptic while 1.0% solution is disinfectant.
 - 4) Tincture of iodine is a powerful antiseptic.
- 134. When a liquid X is treated with Na_2CO_3 solution, a mixture of two salts Y and Z are produced in the solution. The mixture on acidification with sulphuric acid and distillation, produces the liquid X again Identify X.
 - 1) *Cl*₂

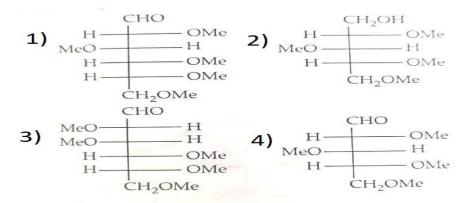
- 3) *Hg*
- 4) *l*₂
- Which of the following will be most readily dehydrated in acidic condition 135.



- 136. An element occurs in two crystalline forms α and β . α -form has a fcc structure with $\alpha = 3.68$ A and β – form has a bcc structure with a = 2.92 A calculate the ratio of their densities.

2) 1:2

3) 2:1

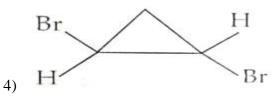

- 4) 2:3
- 137. The increasing order of atomic radii of the following group 13 elements is
 - 1) Al < Ga < In < TI
- 2) Ga < Al < In < TI
- 3) Al < In < Ga < TI
- 4) Al < Ga < TI < In
- 138. Adsorption of a gas follows Freundlich adsorption isotherm x is the mass of the gas adsorption on mass m of the adsorbent. The plot of $\log \frac{x}{m}$ versus $\log P$ is shown in the given graph $\frac{x}{m}$ is proportional to

- 139. $SiCl_4$ is easily hydrolysed but CCI_4 is not. This is because
 - 1) bonding in $SiCI_4$ is ionic
 - 2) silicon is non-metallic
 - 3) silicon can extend its coordination number beyond four but carbon cannot
 - 4) silicon can form hydrogen bonds but carbon cannot.
- 140. In which of the following coordination entities the magnitude of Δ_0 (CFSE in octahedral field) will be maximum

- 1) $\left[Co(C_2O_4)_3\right]^{3-}$ 2) $\left[Co(H_2O)_6\right]^{3-}$ 3) $\left[Co(NH_3)_6\right]^{3+}$ 4) $\left[Co(CN)_6\right]^{3-}$ 141. D-glucose $\xrightarrow{CH_3CH_2SH} \xrightarrow{NaOH} \xrightarrow{NaOH} \xrightarrow{HgCl_2} X$

The final product X is

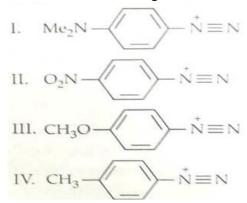

- 142. An amount of solid NH_4HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm Pressure. Ammonium hydrogen sulphide decomposes to yield NH_3 and H_2S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm. The Equilibrium constant for NH_4HS decomposition at this temperature is 1) 0.30 2) 0.18 3) 0.17 4) 0.11
- 143. Give the structure of the compound X formed in the following reaction


OCH₃ (i)
$$C_2H_5MgI$$
 X

1) OH OCH₃

2) OH OCH₃

- 144. If S_1, S_2, S_3 and S_4 are the solubilities of AgCI in water, in 0.01 M $CaCI_2$, in 0.01 M NaCI and in 0.05M $AgNO_3$ respectively at a certain temperature, the correct order of solubility is
 - 1) $S_1 > S_2 > S_3 > S_4$ 2) $S_1 > S_3 > S_2 > S_4$ 3) $S_1 > S_2 = S_3 > S_4$ 4) $S_1 > S_3 > S_4 > S_2$
- 145. Which of the following molecules will not show optical activity



- 146. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter orbit jumps of the electron, for Bohr orbits in an atom of hydrogen?
 - 1) $3 \rightarrow 2$

2) $5 \rightarrow 2$

- 3) $4 \rightarrow 1$
- 4) $2 \rightarrow 5$

147. Consider the following ions:

The reactivity order of these ions towards azo coupling reaction under similar conditions is

- 1) *I < IV < II < III*
- 2) *I* < *III* < *IV* < *II*
- 3) *III* < *I* < *II* < *IV*
- 4) III < I < IV < II
- 148. 0.44 g of a monohydric alcohol when added to methyl magnesium iodide in ether liberates 112 cm^3 of Methane at S.T.P . with PCC the same alcohol forms a carbonyl compound that answers silver mirror test. The monohydric alcohol is

$$(CH_3)_3C-CH_2OH$$

 $(CH_3)_2CH-CH_2OH$

- 149. Consider a reaction $aG+bH \rightarrow products$. When concentration of both the reactants G and H is doubled. The rate increases eight times. However, when concentration of G is doubled keeping the concentration of H Fixed. The rate is doubled. The overall order of the reaction is
 - 1)(

2)

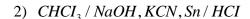
3) 2

- 4) 3
- 150. Match the column I with column II and mark the appropriate choice.

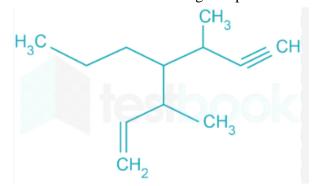
Column I

Column II

1) Quick Lime


(I)setting fractured bones

2) plaster of Paris


(II)A constituent of chewing gum

3) Slaked lime

- (III) manufacture of belching power
- 4) lime store (IV) Manufacture of dyestuffs
- (A) $(A) \rightarrow (i), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (iii)$
- (B) $(A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (ii)$
- (C) $(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (iv)$
- $(D) (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (i)$
- 151. The order of compounds of their reactivity towards HCN is
 - 1) acetaldehyde <acetone<methyl tert-butyl ketone<di-tert-butyl ketone
 - 2) di-tert-butyl ketone < methyl tert butyl ketone < acetaldehyde
 - 3) di-tert-butyl ketone < acetone <methyl tert-butyl ketone < acetaldehyde
 - 4) acetone < acetaldehyde < di-tert-butyl ketone < methyl tert-butyl ketone.
- which of the following is a correct method to convert P-toluidine to p-toluic acid
 - 1) Diazotisation, CuCN, H_2/pd

- 3) Diazotisation, CuCN / KCN, H_2O / H^+
- 4) Diazotisation, NaCN, NaOH
- 153. The IUPAC name for the following compound is

- 1) 3-methyl-4-(3-methylprop-1-enyl)-heptyne
- 2)3,5-dimethyl-4-propylhept-6-en-l-yne
- 3)3-methyl-4-(1-methylprop-2-ynyl)-1-heptene
- 4) 3,5-dimethyl-4-propylhept-1-en-6-yne
- 154. The main reactions occurring in blast furnace during extraction of iron from haematite are
 - (I) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
 - (II) $FeO + SiO_2 \rightarrow FeSiO_3$
 - (III) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$
 - (IV) $CaO + SiO_2 \rightarrow CaSiO_3$
 - 1) I, II and III
- 2) I and IV
- 3) I, III and IV
- 4) II and III
- 155. A dihaloalkane 'X' having formula $C_3H_6CI_2$, on hydrolysis gives a compound, that can reduce Tollen's reagent. The compound 'X' is
 - 1) 1,2-dichloropropane
 - 2) 1,1-dichloropropane
 - 3) 1,3-dichloropropane
 - 4) 2,2-dichloropropane
- 156. An organic compound is estimated through Dumas method and was found to evolved 6 moles of CO_2 ,4 moles of H_2O and 1 mole of nitrogen gas. The formula of the compound is
 - 1) $C_6 H_8 N$
- 2) $C_{12}H_8N$
- 3) $C_{12}H_8N_2$
- 4) $C_{\epsilon}H_{\circ}N_{\gamma}$
- 157. Among the following species, identify the isostructural pairs NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3
 - 1) $\lceil NF_3, NO_3^- \rceil$ and $\lceil BF_3, H_3O^+ \rceil$

2) $\lceil NF_3, HN_3 \rceil$ and $\lceil NO_3^-, BF_3 \rceil$

3) $\left[NF_3, H_3O^+\right]$ and $\left[NO_3^-, BF_3\right]$

- 4) $\left[NF_3, H_3O^+\right]$ and $\left[HN_3, BF_3\right]$
- 158. Vapour pressure of dilute aqueous solution of glucose is 750 mm of mercury at 373 K. The mole fraction of Solute is
 - 1) 1/76

2) 1/7.6

3) 1/38

- 4) 1/10
- 159. The Principal products obtained on heating iodine with concentrated caustic soda solution are
 - 1) NaOI + NaI
- 2) $NaIO_3 + NaI$
- 3) $NaOI + NaIO_3 + NaI$
- 4) $NaIO_{\Delta} + NaI$
- 160. Formation of polyethylene from calcium carbide takes place as follows:

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$nC_2H_4 \rightarrow (-CH_2 - CH_2 -)_{11}$$

The amount of polyethylene obtained from 64 kg of CaC, is

- 1) 7 kg
- 2) 14 *kg*
- 3) 21 kg

4) 28 kg

KEY SHEET

MATHEMATICS

1	2	3	4	5	6	7	8	9	10
3	4	1	2	4	1	2	2	3	2
11	12	13	14	15	16	17	18	19	20
1	1	4	1	1	1	2	3	1	4
21	22	23	24	25	26	27	28	29	30
2	1	2	4	1	2	2	4	3	1
31	32	33	34	35	36	37	38	39	40
1	3	4	2	1	3	2	2	2	3
41	42	43	44	45	46	47	48	49	50
2	1	1	3	1	4	4	2	1	1
51	52	53	54	55	56	57	58	59	60
3	2	1	3	3	4	1	1	2	2
61	62	63	64	65	66	67	68	69	70
2	1	1	3	1	3	3	1	2	1
71	72	73	74	75	76	77	78	79	80
1	2	3	2	2	2	3	3	2	1

	PHYSICS										
81	82	83.	84	85	86	87	88	89	90		
1	3	1	4	2	2	3	3	3	3		
91	92	93	94	95	96	97	98	99	100		
1	4	2	4	2	2	1	2	3	1		
101	102	103	104	105	106	107	108	109	110		
3	2	1	3	2	2	4	2	1	3		
111	112	113	114	115	116	117	118	119	120		
3	2	1	1	1	2	4	3	2	2		
				CHE	MISTRY						
121	122	123	124	125	126	127	128	129	130		
3	1	1	2	3	1	1	2	3	4		
131	132	133	134	135	136	137	138	139	140		
1	1	1	2	1	1	3	1	3	4		
141	142	143	144	145	146	147	148	149	150		
1	4	3	2	3	2	2	2	4	2		
151	152	153	154	155	156	157	158	159	160		
2	3	3	2	2	2	3	1	2	4		